Question Number	Acceptable Answers		Reject	Mark
1(a)	$V^{2+}(aq) + 2e^- \rightleftharpoons V(s)$	-1.18 (V)		(1)
	$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	-0.26 (V)		
	Both correct			

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	(salt bridge containing saturated solution of) potassium nitrate / KNO ₃ ALLOW potassium chloride / KCI / sodium chloride / NaCI /sodium nitrate / NaNO ₃ (1) B (electrode) platinum /Pt (1)	KI / NaI	(3)
	C (solution containing) vanadium(II) and vanadium(III) ions / V ²⁺ and V ³⁺ ions ALLOW compounds of V ²⁺ and V ³⁺ (1) IGNORE any concentrations		

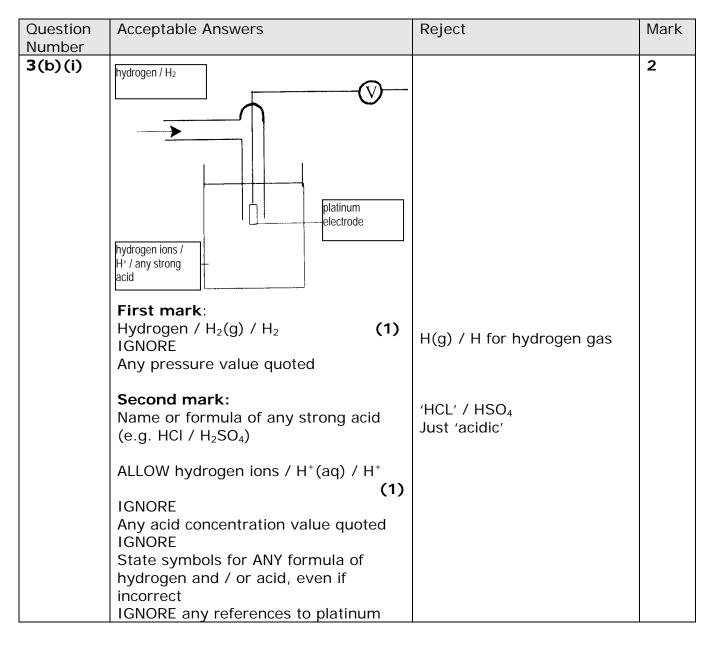
Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	298 K / 25°C (temperature)	298°K / 273 K / 0°C / room temperature	(2)
	1 atm / 100 kPa /101 kPa / 1 bar (pressure) ALLOW atmospheric pressure IGNORE hydrogen / gas	wrong pressure units eg 100 Pa	
	1 mol dm ⁻³ (all concentrations) ALLOW this if written in (b)(i)	wrong concentration units eg 1 mol	
	ALLOW '1 molar' / 1M / equal concentrations of V ²⁺ and V ³⁺ / vanadium(II) and vanadium(III) ions		
	All 3 correct (2) Any 2 correct (1)		

Question Number	Acceptable Answers		Reject	Mark
1 (c)	First mark – stand alone vanadium(IV) / V(IV) / (+)4 (oxidation sta	te)		(5)
	ALLOW V ⁴⁺	(1)		
	IGNORE VO ²⁺			
	Second mark			
	E^{Θ}_{Cell} (= 1.00 - 0.54) = (+)0.46 (V)	(1)		
	Third mark $2VO_2^+ + 4H^+ + 2I^- \rightarrow 2VO^{2+} + 2H_2O + I_2$		Mention of	
	ALLOW multiples / ⇌	(1)	iodide ions reduced	
	IGNORE any working before this equation			
	Fourth mark For the reduction of V (IV) to V (III) $E^{\theta}_{cell} (= 0.34 - 0.54) = -0.2(0) \text{ (V)}$		Incorrect value	
	OR E^{θ}_{cell} for the reaction between VO^{2+} and I^{-} in negative (so $V(IV)$ is not reduced to $V(III)$)			
	OR I_2/I^- electrode potential / SEP / E^0 value is positive than the VO^{2+}/V^{3+} value (so $V(IV)$ reduced to $V(III)$)			
	OR VO^{2+}/V^{3+} electrode potential / SEP / E^{9} value less positive than the I_2/I^- value (so V(IV) reduced to V(III)) (1)	is not		
	IGNORE equation for VO ²⁺ and I ⁻			
	Fifth mark – stand alone E^{θ}_{cell} is positive / greater than 0 so (first) resist feasible and E^{θ}_{cell} is negative / less than 0 so (second) resisted.			
	is not feasible			
	ALLOW spontaneous for feasible IGNORE incorrect values provided the signs correct	(1) s are		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	electrode South Pt electrode Vit (ag) Vit (ag) Ord Vit (ag)		3
	Beaker with V electrode in solution containing V ²⁺ (aq) AND beaker containing V ²⁺ (aq) and V ³⁺ (aq) with Pt electrode		
	N.B. Both solution levels must be shown (1)		
	Labelled salt bridge AND connections to voltmeter ALLOW Suitable name or formula of salt for label	Salt bridge neither dipping into nor touching solution unless penalised in MP1	
	ALLOW Salts eg NaCl in salt bridge (1)	Salt bridge containing an alkali/acid	
	Ion concentrations = 1 mol dm ⁻³ ALLOW M for mol dm ⁻³ Concentrations given in one beaker only	1 mole of V ²⁺ and 1 mole of V ³⁺	
	(1)		
	Beaker positions may be reversed		
	Ignore references to temperature and pressure		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)i)	st mark $2V^{3+} + V \rightarrow 3V^{2+}$ Balanced equation, either direction ALLOW Eqm sign for \rightarrow IGNORE State symbol even if incorrect (1) Second mark	e ⁻ included	2
	Correct direction ALLOW		
	If balancing is incorrect or e ⁻ included in equation (1)		

Question Number	Acceptable Answers		Reject	Mark
2b(i)	$([VO^{2+}(aq) + 2H^{+}(aq)],$ $[V^{3+}(aq) + H_2O(I)] Pt)$	+0.34		1
	$([VO_2^+(aq) + 2H^+(aq)],$ $[VO^{2+}(aq) + H_2O(I)] Pt)$	+1.00		
	Sign and value needed			


Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	A : (+)0.32 (V) (1)		6
	VO ²⁺ (may be shown as a product in an overall equation) (1)		
	EITHER Bubbles / effervescence (of colourless gas) OR Colour changes (from yellow) to blue		
	TE on negative E_{cell} for 'stays yellow'	Violet	
	ALLOW (from yellow) to green if justified by partial reduction (1)	violet	
	B: -0.2(0) (V) (1) no change / stays blue (1) If B=+0.2 or other positive value allow colour change from blue to green or brown.	Stays violet	
	EITHER Consistent use of rule that reaction occurs when $E_{\rm cell}$ is positive OR Consistent use of rule that no reaction occurs when $E_{\rm cell}$ negative ALLOW		
	If implied but not stated specifically (1)		

Question Number	Acceptable Answers	Reject	Mark
2c(i)	$V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^-$ OR Ox number of V increases by 3, ox number of Mn decreases by 5 ALLOW Balanced full equation $5V^{2+} + 3MnO_4^- + 4H^+ \rightarrow$ $5VO_2^+ + 3Mn^{2+} + 2H_2O$	Reverse equation unless used to deduce final correct equation.	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	$(35.50 \times 0.0200/1000) = 7.1(0) \times 10^{-4} / 0.00071$		1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)i)	final answer 92.2 scores 3 marks 33.2 scores 2 marks (ratio inverted) 55.3 scores 2 marks (ratio 1:1)		3
	METHOD 1 Mol V ²⁺ reacting = 7.10x 10 ⁻⁴ x 5/3 = 1.18333 x 10 ⁻³ = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)	x 3/5 = 4.26x 10 ⁻⁴	
	Mass $NH_4VO_3 = (1.183 \times 10^{-3} \times 116.9)$ = 0.1382927 g TE from 4.26 x $10^{-3} = 0.497994$ (1)		
	% purity = (0.1382927x 100/ 0.150) = (92.19333) = 92.2% TE from 0.497994 = 33.2% (1)		
	METHOD 2		
	If 100% pure, moles of NH ₄ VO ₃ =0.150/116.9=1.283 x 10 ⁻³ (1)		
	Mol V ²⁺ reacting = 7.10x 10 ⁻⁴ x 5/3 = 1.18333 x 10 ⁻³ = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)		
	% purity = =1.18333 x 10 ⁻³ x 100/1.283 x 10 ⁻³ = 92.2 % (1)		
	ALLOW TE at each step provided that each number used is to at least 2sf		

Question	Acceptable Answers	Reject	Mark
Number			
3 (a)			2
	Half-equation E° / V]	
	0.4(0)		
	+0.4(0)		
	+1.23	+2.46	
		1	
	(1) for each correct value		
	Penalise omission of + once only		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	 1 atm / 100 kPa / 101 kPa /1 bar 	Wrong pressure units	2
	• 1 mol dm ⁻³ ([H ⁺] / [HCI]) ALLOW '1 molar' / '1M'	Incorrect concentration units (eg '1 mol' / 1 mol ⁻¹ dm ³ for [H ⁺])	
	• 298 K / 25 °C ALLOW "OK"	273 K / 0°C / 'room temperature'	
	All THREE conditions correct = 2 marks		
	Any TWO conditions correct = 1 mark		
	IGNORE References to 'standard conditions' References to Pt/catalyst		
	ALLOW 0.5 mol dm $^{-3}$ H $_2$ SO $_4$ INSTEAD of the 1 mol dm $^{-3}$ ([H $^+$] / [HCI])		

Question	Acceptable Answers	Reject	Mark
Number	Plant as a de		
3 (c)	First mark: Mentions / some evidence for the use of BOTH equations 1 AND 3 from the table in any way, even if reversed or left unbalanced eg $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-$ (aq) AND $4OH^-(aq) + 2H_2(g) \rightarrow 4H_2O(l) + 4e^-$ (1) ALLOW \rightleftharpoons for \rightarrow	Equations involving H ⁺	2
	Second mark: (Adds the above half-equations cancelling 4e ⁻ to get)		
	$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$	If e ⁻ / OH ⁻ / H ⁺ / two	
	OR	surplus H ₂ O molecules remain in this final equation	
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ (1) ALLOW \rightleftharpoons for \rightarrow but must have H_2 and O_2 on left	remain in this final equation	
	Mark the second scoring point independently		
	Award this mark if the correct equation is seen, no matter how it is derived		
	ALLOW MULTIPLES OF EQUATIONS IN ALL CASES		
	IGNORE any state symbols, even if incorrect		
	ALLOW equilibrium sign ≠ used in ANY of the above equations instead of the full arrows		

Question Number	Acceptable Answers	Reject	Mark
3 (d)	<pre>E^ecell = +0.40 — (-0.83) (V) = (+)1.23 (V) + sign NOT required in final answer Correct answer with or without working scores (1) No ECF from any incorrect E^e values used</pre>	-1.23 (V)	1

Question Number	Acceptable Answers	Reject	Mark
3(e)	Reaction / equation is the same OR Reaction / equation for both is 2H₂(g) + O₂(g) → 2H₂O(l) ALLOW ightharpoonup for both is 2H₂(g) + O₂(g) → 2H₂O(l) ALLOW ightharpoonup for both is 2H₂(g) + O₂(g) → 2H₂O(l) ALLOW ightharpoonup for both is 2H₂(g) + O₂(g) → 2H₂O(l) ALLOW state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and oxygen' / 'reactants and products are the same' ALLOW multiples of the equation	'Electrode potentials don't change' Just same product / water is produced Just same reactants are oxidized and reduced Same reaction but in reverse scores (0)	1

Question Number	Acceptable Answers	Reject	Mark
3(f)	To increase the surface area /to increase the number of active sites		1

Question	Acceptable Answers	Reject	Mark
3(g)	Storage (problems) OR hydrogen / oxygen / the gases have to be stored under pressure OR Leakage (of hydrogen / of oxygen /of gas) OR Transport(ation) problems OR Hard to carry / lack of portability OR Hydrogen flammable / inflammable OR Hydrogen explosive OR (Fuel cell) costly / expensive OR Needs (regular) re-filling OR Needs continual replenishment of H2 and O2 OR Lack of availability (of hydrogen / fuel) OR Hydrogen is made from fossil fuels / hydrogen is made from Natural Gas / hydrogen is made from non-renewable resources ALLOW water is a Greenhouse gas / Fuel cell(s) have short(er) life-span / Fuel cells have to be (regularly) replaced IGNORE references to just 'danger' or just 'safety' or just 'hazardous' Any arguments in terms of voltage output	'Fuel cell can only be used once' scores (0)	1
	References to cannot be recharged		

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)	$-285.8 / -286 \text{ (kJ mol}^{-1}\text{)}$		1

Question	Acceptable Answers	Reject	Mark
Number 4(b)(i)	$H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^{(-)}$ (1)		3
	$O_2(g) + 2H_2O(I) + 4e^{(-)} \rightarrow 4OH^-(aq)$ (1)		
	For state symbols mark: Two of the four stated equations (see the two equations above and the two equations below) must be quoted even if reversed or unbalanced. All state symbols must be correct in both equations for correct species for the state		
	symbol mark (penalise once only) (1) Both equations for an acid fuel cell score max 2 (1 for correct equations and 1 for states) e.g.		
	$H_2(g) \rightarrow 2H^+(aq) + 2e^{(-)}$ OR $H_2(g) - 2e^{(-)} \rightarrow 2H^+(aq)$		
	$O_2(g) + 4H^+(aq) + 4e^{(-)} \rightarrow 2H_2O(l)$		
	ALLOW Equation multiples Equations in reverse direction Any order of equations Reversible arrows		

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Electrolyte / to allow the movement of ions (between electrodes) ALLOW Movement of hydrogen ions/ oxonium ions / hydroxonium ions / hydroxium ions / H ⁺ / H ₃ O ⁺ / hydroxide ions / OH ⁻ (between electrodes) IGNORE References to electron transfer	Catalyst Just 'conducts electricity' Movement of other ions / charged species	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	Any two of		2
	Both involve breaking / weakening bonds		
	OR		
	Both involve active site(s) (on the catalyst surface)		
	OR		
	Adsorption (2)	Ab sorption	
	IGNORE		
	Lowers the activation energy		
	Both heterogeneous		
	References to surface area or "surface for the reaction"		
	References to orientation of reactant molecules		
	"Reaction pathway is similar"		

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(i)	Water is the only product (at the point of use) / no oxide(s) of carbon IGNORE Reference to efficiency and/or high energy density Greener	Less oxide(s) of carbon	1

Question Number	Acceptable Answers	Reject	Mark
4(c) (ii)	Any two from: Fuel cell is more efficient / 70% efficient ALLOW Any % between 70% and 100% It produces electricity directly OR Less heat loss	Any mention of carbon emissions	2
	Releasing energy in a more controlled manner (2) IGNORE References to safety		

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	Either High cost / expensive		1
	OR		
	Cost of catalyst		
	OR		
	Short life-span		
	IGNORE References to liquefaction and / or storage of hydrogen / size / weight		

Question Number	Acceptable Answers	Reject	Mark
4(c)(iv)	Any two from Ethanol renewable / sustainable / carbon neutral / availability of raw materials / low(er) carbon footprint / made from natural processes e.g. fermentation or biomass Less explosive / less flammable / safe(r) Easier to store / pressure not needed for storage / easier to transfer Fuel tank light(er) / small(er) New petrol stations not required ALLOW Reverse arguments for hydrogen IGNORE Reference to cost References to energy density		2